Abstract
The rapid development of remote sensing technology has brought about a sharp increase in the amount of remote sensing image data. However, due to the satellite’s limited hardware resources, space, and power consumption constraints, it is difficult to process massive remote sensing images efficiently and robustly using the traditional remote sensing image processing methods. Additionally, the task of satellite-to-ground target detection has higher requirements for speed and accuracy under the conditions of more and more remote sensing data. To solve these problems, this paper proposes an extremely efficient and reliable acceleration architecture for forward inference of the YOLOX-s detection network an on-orbit FPGA. Considering the limited onboard resources, the design strategy of the parallel loop unrolling of the input channels and output channels is adopted to build the largest DSP computing array to ensure a reliable and full utilization of the limited computing resources, thus reducing the inference delay of the entire network. Meanwhile, a three-path cache queue and a small-scale cascaded pooling array are designed, which maximize the reuse of on-chip cache data, effectively reduce the bandwidth bottleneck of the external memory, and ensure an efficient computing of the entire computing array. The experimental results show that at the 200 MHz operating frequency of the VC709, the overall inference performance of the FPGA acceleration can reach 399.62 GOPS, the peak performance can reach 408.4 GOPS, and the overall computing efficiency of the DSP array can reach 97.56%. Compared with the previous work, our architecture design further improves the computing efficiency under limited hardware resources.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences Funding Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献