Puppis: Hardware Accelerator of Single-Shot Multibox Detectors for Edge-Based Applications

Author:

Vrbaski Vladimir1,Josic Slobodan2,Vranjkovic Vuk3ORCID,Teodorovic Predrag3,Struharik Rastislav3

Affiliation:

1. Methods2Business, Mite Ruzica 1, 21000 Novi Sad, Serbia

2. Syrmia, Industrijska 3b, 21000 Novi Sad, Serbia

3. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

Abstract

Object detection is a popular image-processing technique, widely used in numerous applications for detecting and locating objects in images or videos. While being one of the fastest algorithms for object detection, Single-shot Multibox Detection (SSD) networks are also computationally very demanding, which limits their usage in real-time edge applications. Even though the SSD post-processing algorithm is not the most-complex segment of the overall SSD object-detection network, it is still computationally demanding and can become a bottleneck with respect to processing latency and power consumption, especially in edge applications with limited resources. When using hardware accelerators to accelerate backbone CNN processing, the SSD post-processing step implemented in software can become the bottleneck for high-end applications where high frame rates are required, as this paper shows. To overcome this problem, we propose Puppis, an architecture for the hardware acceleration of the SSD post-processing algorithm. As the experiments showed, our solution led to an average SSD post-processing speedup of 33.34-times when compared with a software implementation. Furthermore, the execution of the complete SSD network was on average 36.45-times faster than the software implementation when the proposed Puppis SSD hardware accelerator was used together with some existing CNN accelerators.

Funder

European Union’s Horizon 2020 research and innovation program

Ministry of Education, Science and Technological Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3