Research on the Torque Control Strategy of a Distributed 4WD Electric Vehicle Based on Economy and Stability Control

Author:

Qiu Lei,Zhu Shaopeng,Liu Dong,Xiang Zhiwei,Fu Hong,Chen Huipeng

Abstract

To improve the comprehensive performance of the distributed wheel-side four-wheel-drive electric bus, the problem of optimal distribution of the driving torque of the four wheel-side motors is studied. Aiming at the poor economy and failure of switching control due to the consideration of both straight and steering conditions, this paper proposes a fuzzy yaw moment control strategy based on the golden section search algorithm. Under full working conditions, according to the efficiency characteristics of the front and rear axle drive motors, the golden section search algorithm is used to determine the best front and rear axle motor torque distribution coefficient K to distribute the front and rear axle motor torques. Given the stability problems existing in the steering conditions, based on the optimal torque distribution of the front and rear axles, fuzzy control is used to calculate the expected yaw moment, and the left and right wheel torques are adjusted in real time. The simulation is carried out through TruckSim and MATLAB/Simulink, and a hardware-in-the-loop platform is built for experimentation under step steering conditions and sine wave steering conditions. The results show that the proposed torque optimal distribution strategy can optimally distribute the torque of the four drive motors through the real-time identification of working conditions. Compared with the four-wheel equal distribution, under two different steering conditions, the torque distribution efficiency of the torque distribution strategy using the golden section search algorithm increased by 4.35% and 3.83%, respectively. The energy utilization rate of the whole vehicle is improved under all of the working conditions. Under steering conditions, compared with the four-wheel equal distribution and the torque distribution strategy using the golden section search algorithm under all of the conditions, the yaw rate deviation and the slip angle deviation can be reduced, and the yaw stability has been improved.

Funder

control design of new energy vehicle air conditioning compressor based on intelligent multi-objective optimization

research on the theory and method of autonomous cooperative operation control of high-speed trains

research and manufacture of high precision grinding process of wear-resistant seals of construction machinery

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3