Classifying Conditions of Speckle and Wrinkle on the Human Face: A Deep Learning Approach

Author:

Chang Tsai-RongORCID,Tsai Ming-Yen

Abstract

Speckles and wrinkles are common skin conditions on the face, with occurrence ranging from mild to severe, affecting an individual in various ways. In this study, we aim to detect these conditions using an intelligent deep learning approach. First, we applied a face detection model and identified the face image using face positioning techniques. We then split the face into three polygonal areas (forehead, eyes, and cheeks) based on 81 position points. Skin conditions in the images were firstly judged by skin experts and subjectively classified into different categories, from good to bad. Wrinkles were classified into five categories, and speckles were classified into four categories. Next, data augmentation was performed using the following manipulations: changing the HSV hue, image rotation, and horizontal flipping of the original image, in order to facilitate deep learning using the Resnet models. We tested the training using these models each with a different number of layers: ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. Finally, the K-fold (K = 10) cross-validation process was applied to obtain more rigorous results. Results of the classification are, in general, satisfactory. When compared across models and across skin features, we found that Resnet performance is generally better in terms of average classification accuracy when its architecture has more layers.

Funder

A2IBRC, STUST from the Higher Education Sprout Project of the Ministry of Education, Taiwan

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

1. Lifestyle factors and visible skin aging in a population of Japanese elders;Asakura;J. Epidemiol.,2009

2. 5.1 Layers of the Skin—Anatomy and Physiology 2e | OpenStax. 2022.

3. Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images;Riaz;IEEE J. Biomed. Health Inform.,2019

4. Deep learning from limited training data: Novel segmentation and ensemble algorithms applied to automatic melanoma diagnosis;Albert;IEEE Access,2020

5. Liao, H. A Deep Learning Approach to Universal Skin Disease Classification. 2022.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3