Abstract
Speckles and wrinkles are common skin conditions on the face, with occurrence ranging from mild to severe, affecting an individual in various ways. In this study, we aim to detect these conditions using an intelligent deep learning approach. First, we applied a face detection model and identified the face image using face positioning techniques. We then split the face into three polygonal areas (forehead, eyes, and cheeks) based on 81 position points. Skin conditions in the images were firstly judged by skin experts and subjectively classified into different categories, from good to bad. Wrinkles were classified into five categories, and speckles were classified into four categories. Next, data augmentation was performed using the following manipulations: changing the HSV hue, image rotation, and horizontal flipping of the original image, in order to facilitate deep learning using the Resnet models. We tested the training using these models each with a different number of layers: ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. Finally, the K-fold (K = 10) cross-validation process was applied to obtain more rigorous results. Results of the classification are, in general, satisfactory. When compared across models and across skin features, we found that Resnet performance is generally better in terms of average classification accuracy when its architecture has more layers.
Funder
A2IBRC, STUST from the Higher Education Sprout Project of the Ministry of Education, Taiwan
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献