Facial Wrinkle Detection with Multiscale Spatial Feature Fusion Based on Image Enhancement and ASFF-SEUnet

Author:

Chen Jiang1,He Mingfang1,Cai Weiwei2ORCID

Affiliation:

1. School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

Abstract

Wrinkles, crucial for age estimation and skin quality assessment, present challenges due to their uneven distribution, varying scale, and sensitivity to factors like lighting. To overcome these challenges, this study presents facial wrinkle detection with multiscale spatial feature fusion based on image enhancement and an adaptively spatial feature fusion squeeze-and-excitation Unet network (ASFF-SEUnet) model. Firstly, in order to improve wrinkle features and address the issue of uneven illumination in wrinkle images, an innovative image enhancement algorithm named Coiflet wavelet transform Donoho threshold and improved Retinex (CT-DIR) is proposed. Secondly, the ASFF-SEUnet model is designed to enhance the accuracy of full-face wrinkle detection across all age groups under the influence of lighting factors. It replaces the encoder part of the Unet network with EfficientNet, enabling the simultaneous adjustment of depth, width, and resolution for improved wrinkle feature extraction. The squeeze-and-excitation (SE) attention mechanism is introduced to grasp the correlation and importance among features, thereby enhancing the extraction of local wrinkle details. Finally, the adaptively spatial feature fusion (ASFF) module is incorporated to adaptively fuse multiscale features, capturing facial wrinkle information comprehensively. Experimentally, the method excels in detecting facial wrinkles amid complex backgrounds, robustly supporting facial skin quality diagnosis and age assessment.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A UV Spot Detection Method Based on Facial Skin Image;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

2. FACIAL RECOGNITION FOR SECURITY SYSTEMS;INTERDISCIP DESCR CO;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3