A Survey on Different Plant Diseases Detection Using Machine Learning Techniques

Author:

Hassan Sk Mahmudul,Amitab KhwairakpamORCID,Jasinski MichalORCID,Leonowicz ZbigniewORCID,Jasinska ElzbietaORCID,Novak TomasORCID,Maji Arnab KumarORCID

Abstract

Early detection and identification of plant diseases from leaf images using machine learning is an important and challenging research area in the field of agriculture. There is a need for such kinds of research studies in India because agriculture is one of the main sources of income which contributes seventeen percent of the total gross domestic product (GDP). Effective and improved crop products can increase the farmer’s profit as well as the economy of the country. In this paper, a comprehensive review of the different research works carried out in the field of plant disease detection using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We address the challenges faced in the identification of plant diseases using handcrafted-features-based approaches. The application of deep-learning-based approaches overcomes the challenges faced in handcrafted-features-based approaches. This survey provides the research improvement in the identification of plant diseases from handcrafted-features-based to deep-learning-based models. We report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset, but the performance of the model may be decreased significantly when the system is tested on field image condition or on different datasets. Among the deep learning models, deep learning with an inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and produce higher performance results. We also address some of the challenges that are needed to be solved to identify the plant diseases effectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral sensor‐based device for real‐time detection and severity estimation of groundnut bud necrosis virus in tomato;Journal of Field Robotics;2024-07-15

2. Automatic mango leaf disease detection using different transfer learning models;Multimedia Tools and Applications;2024-05-07

3. Bacterial Disease Detection of Cherry Plant Using Deep Features;Sakarya University Journal of Computer and Information Sciences;2024-04-30

4. Disease Classification in Paddy Crop Leaves Using Deep Learning;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

5. Revolutionizing Hops Plant Disease Classification: Harnessing the Power of Transfer Learning;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3