Application of Improved Quasi-Affine Transformation Evolutionary Algorithm in Power System Stabilizer Optimization

Author:

Huang Jing,Liu Jiajing,Zhang Cheng,Kuang Yu,Weng Shaowei

Abstract

This paper proposes a parameter coordination optimization design of a power system stabilizer (PSS) based on an improved quasi-affine transformation evolutionary (QUATRE) algorithm to suppress low-frequency oscillation and improve the dynamic stability of power systems. To begin, the simulated annealing (SA) algorithm randomly updates the globally optimal solution of each QUATRE iteration and matches the inferior solution with a certain probability to escape the local extreme point. This new algorithm is first applied to the power system. Since the damping ratio is one of the criteria with which to measure the dynamic stability of the power system, this paper sets the objective function according to the principle of maximization of the damping coefficient of the electromechanical mode, and uses SA-QUATRE to search a group of global optimal PSS parameter combinations to improve the safety factor of the system as much as possible. Finally, the method’s rationality and validity were validated by applying it to the simulation examples of the IEEE 4-machine 2-area system with different operation states. The comparison with the traditional optimization algorithm shows that the proposed method has more advantages for multi-machine PSS parameter coordination optimization, can restrain the low-frequency oscillation of the power system more effectively and can enhance the system’s stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

1. Phenomenon and mechanism of interval tie-line power oscillation in ultra-low frequency oscillation;Xu;Power Syst. Autom.,2020

2. Low-Frequency Oscillation in Electric Railway Depot: A Comprehensive Review

3. Influence of photovoltaic grid connection on low-frequency oscillation;Bai;J. Sol. Energy,2020

4. Investigating the Impact of using Modern Power System Stabilizers on Frequency Stability in Large Dynamic Multi-Machine Power System;Obaid;Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC),2020

5. An Efficient Rapid Method for Generators Coherency Identification in Large Power Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3