Optimization of Power System Stabilizers Using Proportional-Integral-Derivative Controller-Based Antlion Algorithm: Experimental Validation via Electronics Environment

Author:

Ibrahim Nader M. A.1ORCID,Talaat Hossam E. A.2,Shaheen Abdullah M.3ORCID,Hemade Bassam A.1ORCID

Affiliation:

1. Electrical Power System and Machines Department, Faculty of Technology & Education, Suez University, Suez 43512, Egypt

2. Electrical Engineering Department, Future University in Egypt (FUE), Cairo 11835, Egypt

3. Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt

Abstract

A robust, optimized power system stabilizer (PSS) is crucial for oscillation damping, and thus improving electrical network stability. Additionally, real-time testing methods are required to significantly reduce the likelihood of software failure in a real-world setting at the user location. This paper presents an Antlion-based proportional integral derivative (PID) PSS to improve power system stability during real-time constraints. The Antlion optimization (ALO) is developed with real-time testing methodology, using hardware-in-the-loop (HIL) that can communicate multiple digital control schemes with real-time signals. The dynamic power system model runs on the dSPACE DS1104, and the proposed PSS runs on the field programmable gate arrays (FPGA) (NI SbRIO-9636 board). The optimized PSS performance was compared with a modified particle swarm optimization (MPSO)-based PID-PSS, through different performance indices. The test cases include other step load perturbations and several short circuit faults at various locations. Twelve different test cases have been applied, through real-time constraints, to prove the robustness of the proposed PSS. These include 5 and 10% step changes through 3 different operating conditions and single, double, and triple lines to ground short circuits through 3 different operating conditions, and at various locations of the system transmission lines. The analysis demonstrates the effectiveness of ALO and MPSO in regaining the system’s stability under the three loading conditions. The integral square of the error (ISE), integral absolute of the error (IAE), integral time square of the error (ITSE), and integral time absolute of the error (ITAE) are used as performance indices in the analysis stage. The simulation results demonstrate the effectiveness of the proposed PSS, based on the ALO algorithm. It provides a robust performance, compared to the traditional PSS. Regarding the applied indices, the proposed PSS, based on the ALO algorithm, obtains significant improvement percentages in ISE, IAE, ITSE, and ITAE with 30.919%, 23.295%, 51.073%, and 53.624%, respectively.

Funder

Future University in Egypt

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3