Reset Noise Sampling Feedforward Technique (RNSF) for Low Noise MEMS Capacitive Accelerometer

Author:

Lai Xinquan,Wang Yuheng,Li Qinqin,Habib KashifORCID

Abstract

The reset noise sampling feedforward (RNSF) technique is proposed in this paper to reduce the noise floor of the readout circuit for micro-electromechanically systems (MEMS) capacitive accelerometer. Because of the technology-imposed size restriction on the sensing element, the sensing capacitance and the capacitance variation are reduced to the femto-farad level. As a result, the reset noise from the parasitic capacitance, which is pico-farad level, becomes significant. In this work, the RNSF technique focuses on the suppression of the parasitic-capacitance-induced noise, thereby improving the noise performance of MEMS capacitive accelerometer. The simulation results show that the RNSF technique effectively suppresses the thermal noise from the parasitic capacitance. Compared with the traditional readout circuit, the noise floor of the readout circuit with the RNSF technique is reduced by 9 dBV. The presented circuit based on the RNSF technique is fabricated by a commercial 0.18-μm BCD process and tested with a femto-farad MEMS capacitive accelerometer. The physical measurement results show that, compared with the readout circuit without the RNSF technique, the RNSF technique reduces the noise floor of the readout circuit for MEMS capacitive accelerometer from −72 dBV to −80 dBV. Compared with other similar works, the proposed readout circuit achieves better FoM (FoM=(power×noise floor)/system bandwidth=490 μW·μg/Hz) among the switched-capacitor readout circuits.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3