Abstract
In recent deep-learning-based real-time object detection methods, the trade-off between accuracy and computational cost is an important consideration. Therefore, based on the fully convolutional one-stage detector (FCOS), which is a one-stage object detection method, we propose a light next FCOS (LNFCOS) that achieves an optimal trade-off between computational cost and accuracy. In LNFCOS, the loss of low- and high-level information is minimized by combining the features of different scales through the proposed feature fusion module. Moreover, the light next block (LNblock) is proposed for efficient feature extraction. LNblock performs feature extraction with a low computational cost compared with standard convolutions, through sequential operation on a small amount of spatial and channel information. To define the optimal parameters of LNFCOS suggested through experiments and for a fair comparison, experiments and evaluations were conducted on the publicly available benchmark datasets MSCOCO and PASCAL VOC. Additionally, the average precision (AP) was used as an evaluation index for quantitative evaluation. LNFCOS achieved an optimal trade-off between computational cost and accuracy by achieving a detection accuracy of 79.3 AP and 37.2 AP on the MS COCO and PASCAL VOC datasets, respectively, with 36% lower computational cost than the FCOS.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献