EAR-Net: Efficient Atrous Residual Network for Semantic Segmentation of Street Scenes Based on Deep Learning

Author:

Shin SeokyongORCID,Lee Sanghun,Han Hyunho

Abstract

Segmentation of street scenes is a key technology in the field of autonomous vehicles. However, conventional segmentation methods achieve low accuracy because of the complexity of street landscapes. Therefore, we propose an efficient atrous residual network (EAR-Net) to improve accuracy while maintaining computation costs. First, we performed feature extraction and restoration, utilizing depthwise separable convolution (DSConv) and interpolation. Compared with conventional methods, DSConv and interpolation significantly reduce computation costs while minimizing performance degradation. Second, we utilized residual learning and atrous spatial pyramid pooling (ASPP) to achieve high accuracy. Residual learning increases the ability to extract context information by preventing the problem of feature and gradient losses. In addition, ASPP extracts additional context information while maintaining the resolution of the feature map. Finally, to alleviate the class imbalance between the image background and objects and to improve learning efficiency, we utilized focal loss. We evaluated EAR-Net on the Cityscapes dataset, which is commonly used for street scene segmentation studies. Experimental results showed that the EAR-Net had better segmentation results and similar computation costs as the conventional methods. We also conducted an ablation study to analyze the contributions of the ASPP and DSConv in the EAR-Net.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3