Research on Signal Modulation Classification under Low SNR Based on ResNext Network

Author:

Zou BinghangORCID,Yan Hanzhi,Wang Faquan,Zhou Yucheng,Zeng Xiaodong

Abstract

To address the shortcomings of existing methods such as low recognition accuracy and poor anti-interference performance under low signal-to-noise ratios, this paper proposes the RFSE-ResNeXt (Residual-fusion squeeze–excitation aggregated residual for networks, RFSE-ResNeXt) network. In this paper, we improve the residual structure of the network based on the ResNeXt network and then introduce the compressed excitation structure to improve the generalization ability of the network. The improvement of the residual structure of the network leads to a good improvement in the overall recognition accuracy of the network; meanwhile, the compressed excitation structure improves the confusion phenomenon when the network faces complex signals with low signal-to-noise ratios. The experimental results show that the proposed network improves the recognition accuracy by 4% on average at a very low SNR of -10dB and reduces the misclassification of AM-DSB into CPFSK by about 27%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

1. Analysis of Radar Emitter Signal Sorting and Recognition Model Structure

2. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network;Wang;Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing,2017

3. Acooperative spectrum sensing method based on Empirical modede composition and information geometry in complex electrom agnetic environment;Wang;Comolexity,2019

4. Neural Networks for Radar Waveform Recognition

5. LPI Radar Waveform Recognition Based on Multi-Branch MWC Compressed Sampling Receiver

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3