ShuffleNet v2.3-StackedBiLSTM-Based Tool Wear Recognition Model for Turbine Disc Fir-Tree Slot Broaching

Author:

Ying Shenshun,Sun Yicheng,Zhou Fuhua,Lin Lvgao

Abstract

At present, deep learning technology shows great market potential in broaching tool wear state recognition based on vibration signals. However, traditional single neural network structure is difficult to extract a variety of different features simultaneously and has low robustness, so the accuracy of wear status recognition is not high. In view of the above problems, a broaching tool wear recognition model based on ShuffleNet v2.3-StackedBiLSTM is proposed in this paper. The model integrates ShuffleNet v2.3, which has been channel shuffling, and StackedBiLSTM, a long and short-term memory network, to effectively extract spatial and temporal features for tool wear state recognition. Based on the innovative recognition model, the turbine disc fir-tree slot broaching experiment is designed, and the performance index system based on confusion matrix is adopted. The experimental research and results show that the model has outstanding accuracy, precision, recall, and F1 value, and the accuracy rate reaches 99.37%, which is significantly better than ShuffleNet v2.3 and StackedBiLSTM models. The recognition speed of a single sample was improved to 8.67 ms, which is 90.32% less than that of the StackedBiLSTM model.

Funder

Zhejiang Province Welfare Technology Applied Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning in food category recognition;Information Fusion;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3