Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network

Author:

Sun Chao1ORCID,Zhou Junhao1ORCID,Jang Kyongseok1ORCID,Kim Youngok1ORCID

Affiliation:

1. Electronic Engineering Department, Kwangwoon University, Seoul 01897, Republic of Korea

Abstract

Sensor-related indoor localization has attracted considerable attention in recent years. The accuracy of conventional fingerprint solutions based on a single sensor, such as a Wi-Fi sensor, is affected by multipath interferences from other electronic devices that are produced as a result of complex indoor environments. Light sensors and magnetic (i.e., geomagnetic) field sensors can be used to enhance the accuracy of a system since they are less vulnerable to disturbances. In this paper, we propose a deep feedforward (DFF)-neural-network-based method, termed DFF-WGL, which integrates the data from the embedded Wi-Fi sensor, geomagnetic field sensor, and light sensor (WGL) in a smart device to localize the device in an indoor environment. DFF-WGL does not require complex and expensive auxiliary equipment, except for basic fluorescent lamps and low-density Wi-Fi signal coverage, conditions that are easily satisfied in modern offices or educational buildings. The proposed system was implemented on a commercial off-the-shelf android device, and performance was evaluated through an experimental analysis conducted in two different indoor testbeds, one measuring 60.5 m2 and the other measuring 38 m2, with 242 and 60 reference points, respectively. The results indicate that the model prediction with an input consisting of the combination of light, a magnetic field sensor, and two Wi-Fi RSS signals achieved mean localization errors of 0.01 m and 0.04 m in the two testbeds, respectively, compared with any subset of combination of sensors, verifying the effectiveness of the proposed DFF-WGL method.

Funder

Korea Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3