Revisiting Symptom-Based Fault Tolerant Techniques against Soft Errors

Author:

So HwisooORCID,Didehban Moslem,Ko YohanORCID,Jeyapaul Reiley,Kim Jongho,Kim Youngbin,Lee Kyoungwoo,Shrivastava Aviral

Abstract

Aggressive technology scaling and near-threshold computing have made soft error reliability one of the leading design considerations in modern embedded microprocessors. Although traditional hardware/software redundancy-based schemes can provide a high level of protection, they incur significant overheads in terms of performance and hardware resources. The considerable overheads from such full redundancy-based techniques has motivated researchers to propose low-cost soft error protection schemes, such as symptom-based error protection schemes. The main idea behind a symptom-based error protection scheme is that soft errors in the system will quickly generate some symptoms, such as exceptions, branch mispredictions, cache or TLB misses, or unpredictable variable values. Therefore, monitoring such infrequent symptoms makes it possible to cover the manifestation of failures caused by soft errors. Symptom-based protection schemes have been suggested as shortcuts to achieve acceptable reliability with comparable overheads. Since the symptom-based protection schemes seem attractive due to their generality and simplicity, even state-of-the-art protection schemes exploit them as the baseline protections. However, our detailed analysis of the fault coverage and performance overheads of such schemes reveals that the user-visible failure coverage, particularly of ReStore, is limited (29% on average). By contrast, the runtime overheads are significant (40% on average) because the majority of the fault injection experiments, which were considered as detected/recovered failures by low-level symptoms, are actually benign faults by program-level masking effects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning-Oriented Reliability Improvement of Computing Systems From Transistor to Application Level;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

2. GCFI: A High Accurate Compiler-based Fault Injection for Transient Hardware Faults;2022 CPSSI 4th International Symposium on Real-Time and Embedded Systems and Technologies (RTEST);2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3