Real-Time Video Stitching for Mine Surveillance Using a Hybrid Image Registration Method

Author:

Bai Zongwen,Li Ying,Chen Xiaohuan,Yi Tingting,Wei Wei,Wozniak MarcinORCID,Damasevicius RobertasORCID

Abstract

Video stitching technology provides an effective solution for a wide viewing angle monitoring mode for industrial applications. At present, the observation angle of a single camera is limited, and the monitoring network composed of multiple cameras will have many overlapping images captured. Monitoring surveillance cameras can cause the problems of viewing fatigue and low video utilization rate of involved personnel. In addition, current video stitching technology has poor adaptability and real-time performance. We propose an effective hybrid image feature detection method for fast video stitching of mine surveillance video using the effective information of the surveillance video captured from multiple cameras in the actual conditions in the industrial coal mine. The method integrates the Moravec corner point detection and the scale-invariant feature transform (SIFT) feature extractor. After feature extraction, the nearest neighbor method and the random sampling consistency (RANSAC) algorithm are used to register the video frames. The proposed method reduces the image stitching time and solves the problem of feature re-extraction due to the change of observation angle, thus optimizing the entire video stitching process. The experimental results on the real-world underground mine videos show that the optimized stitching method can stitch videos at a speed of 21 fps, effectively meeting the real-time requirement, while the stitching effect has a good stability and applicability in real-world conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3