Affiliation:
1. Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
Abstract
The image registration and fusion process of image stitching algorithms entails significant computational costs, and the use of robust stitching algorithms with good performance is limited in real-time applications on PCs (personal computers) and embedded systems. Fast image registration and fusion algorithms suffer from problems such as ghosting and dashed lines, resulting in suboptimal display effects on the stitching. Consequently, this study proposes a multi-channel image stitching approach based on fast image registration and fusion algorithms, which enhances the stitching effect on the basis of fast algorithms, thereby augmenting its potential for deployment in real-time applications. First, in the image registration stage, the gridded Binary Robust Invariant Scalable Keypoints (BRISK) method was used to improve the matching efficiency of feature points, and the Grid-based Motion Statistics (GMS) algorithm with a bidirectional rough matching method was used to improve the matching accuracy of feature points. Then, the optimal seam algorithm was used in the image fusion stage to obtain the seam line and construct the fusion area. The seam and transition areas were fused using the fade-in and fade-out weighting algorithm to obtain smooth and high-quality stitched images. The experimental results demonstrate the performance of our proposed method through an improvement in image registration and fusion metrics. We compared our approach with both the original algorithm and other existing methods and achieved significant improvements in eliminating stitching artifacts such as ghosting and discontinuities while maintaining the efficiency of fast algorithms.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献