Deep Learning Applications with Practical Measured Results in Electronics Industries

Author:

Horng Mong-FongORCID,Kung Hsu-Yang,Chen Chi-HuaORCID,Hwang Feng-Jang

Abstract

This editorial introduces the Special Issue, entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries”, of Electronics. Topics covered in this issue include four main parts: (I) environmental information analyses and predictions, (II) unmanned aerial vehicle (UAV) and object tracking applications, (III) measurement and denoising techniques, and (IV) recommendation systems and education systems. Four papers on environmental information analyses and predictions are as follows: (1) “A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence” by Panapakidis et al.; (2) “Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting” by Wan et al.; (3) “Modeling and Analysis of Adaptive Temperature Compensation for Humidity Sensors” by Xu et al.; (4) “An Image Compression Method for Video Surveillance System in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by Zhang et al. Three papers on UAV and object tracking applications are as follows: (1) “Trajectory Planning Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al.; (2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission Line Maintenance” by Zhang et al.; (3) “Model Update Strategies about Object Tracking: A State of the Art Review” by Wang et al. Five papers on measurement and denoising techniques are as follows: (1) “Characterization and Correction of the Geometric Errors in Using Confocal Microscope for Extended Topography Measurement. Part I: Models, Algorithms Development and Validation” by Wang et al.; (2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation” by Wang et al.; (3) “Deep Transfer HSI Classification Method Based on Information Measure and Optimal Neighborhood Noise Reduction” by Lin et al.; (4) “Quality Assessment of Tire Shearography Images via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al.; (5) “High-Resolution Image Inpainting Based on Multi-Scale Neural Network” by Sun et al. Two papers on recommendation systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for Performance Evaluation of a Recommending Interface with Varied Recommendation Position and Intensity Based on Eye-Tracking Equipment Data Processing” by Sulikowski et al. and (2) “Generative Adversarial Network Based Neural Audio Caption Model for Oral Evaluation” by Zhang et al.

Funder

National Natural Science Foundation of China

Fuzhou University

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3