Author:
Shi Wenlei,Li Zerui,Lv Wenjun,Wu Yuping,Chang Ji,Li Xiaochuan
Abstract
The achievement of robot autonomy has environmental perception as a prerequisite. The hazards rendered from uneven, soft and slippery terrains, which are generally named non-geometric hazards, are another potential threat reducing the traversing efficient, and therefore receiving more and more attention from the robotics community. In the paper, the vibration-based terrain classification (VTC) is investigated by taking a very practical issue, i.e., lack of labels, into consideration. According to the intrinsic temporal correlation existing in the sampled terrain sequence, a modified Laplacian SVM is proposed to utilise the unlabelled data to improve the classification performance. To the best of our knowledge, this is the first paper studying semi-supervised learning problem in robotic terrain classification. The experiment demonstrates that: (1) supervised learning (SVM) achieves a relatively low classification accuracy if given insufficient labels; (2) feature-space homogeneity based semi-supervised learning (traditional Laplacian SVM) cannot improve supervised learning’s accuracy, and even makes it worse; (3) feature- and temporal-space based semi-supervised learning (modified Laplacian SVM), which is proposed in the paper, could increase the classification accuracy very significantly.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献