Neural Network-Based Robust Bipartite Consensus Tracking Control of Multi-Agent System with Compound Uncertainties and Actuator Faults

Author:

Li Tong123,Qin Kaiyu12,Jiang Bing124,Huang Qian123,Liu Hui35,Lin Boxian12ORCID,Shi Mengji12ORCID

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

3. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610041, China

4. Chinese Aeronautical Establishment, Beijing 100029, China

5. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This paper addresses the challenging problem of bipartite consensus tracking of multi-agent systems that are subject to compound uncertainties and actuator faults. Specifically, the study considers a leader agent with fractional-order nonlinear dynamics unknown to the followers. In addition, both cooperative and competitive interactions among agents are taken into account. To tackle these issues, the proposed approach employs a fully distributed robust bipartite consensus tracking controller, which integrates a neural network approximator to estimate the uncertainties of the leader and the followers. The adaptive laws of neural network parameters are continuously updated online based on the bipartite consensus tracking error. Furthermore, an adaptive control technique is utilized to generate the fault-tolerant component to mitigate the partial loss caused by actuator effectiveness faults. Compared with the existing works on nonlinear multi-agent systems, we consider the compound uncertainties, actuator faults and cooperative–competition interactions simultaneously. By implementing the proposed control scheme, the robustness of the closed-loop system can be significantly improved. Finally, numerical simulations are performed to validate the effectiveness of the control scheme.

Funder

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Wuhu Science and Technology Plan Project

Sichuan Science and Technology Innovation Seedling Project

Sichuan Science and Technology Programs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3