A Hybrid GA/ML-Based End-to-End Automated Methodology for Design Acceleration of Wireless Communications CMOS LNAs

Author:

Sad Christos1ORCID,Michailidis Anastasios1ORCID,Noulis Thomas1ORCID,Siozios Kostas1ORCID

Affiliation:

1. Electronics Laboratory, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

A new methodology for the RF/mmWave analog design process, automation and acceleration, is presented in this work. The proposed framework was implemented so as to accelerate the design cycle of analog/RF circuits by creating a dataset in a fully automated manner and training a combination of machine learning models for the optimal design parameters’ prediction. machine learning polynomial regression was adopted to accelerate the design process, predicting the optimal design parameters’ values while genetic algorithm optimization was exploited for the dataset creation automation. To evaluate the efficiency of the proposed methodology, the framework was implemented for the design of a common source Low-Noise-Amplifier, using a 65 nm CMOS process node. The proposed methodology successfully tackles the design cycle speed-up, automation, and acceleration, utilizing machine learning prediction for the design parameters and genetic algorithm for the dataset creation automation instead of the classical, simulation-based, standard design methodology. The provided experimental results have shown the effectiveness of the proposed hybrid approach, creating very precise RF matching networks for LNA designs and achieving >99.9% wave transmission efficiency while reaching >99% accuracy on the parameters’ prediction task.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crosstalk Impact on CMOS Low Noise Amplifiers from RF to millimeter Wave;2024 Panhellenic Conference on Electronics & Telecommunications (PACET);2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3