Non-Uniform Motion Aggregation with Graph Convolutional Networks for Skeleton-Based Human Action Recognition

Author:

Liang Chengwu12ORCID,Yang Jie12ORCID,Du Ruolin3ORCID,Hu Wei12ORCID,Tie Yun4

Affiliation:

1. School of Electrical and Control Engineering, Henan University of Urban Construction, Pingdingshan 467036, China

2. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

3. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

4. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Skeleton-based human action recognition aims to recognize human actions from given skeleton sequences. The literature utilizes fixed-stride sampling and uniform aggregations, which are independent of the input data and do not focus on representative motion frames. In this paper, to overcome the challenge of the fixed uniform aggregation strategy being unable to focus on discriminative motion information, a novel non-uniform motion aggregation embedded with a graph convolutional network (NMA-GCN) is proposed for skeleton-based human action recognition. Based on the skeleton quality and motion-salient regions, NMA is able to focus on the discriminative motion information of human motion-salient regions. Finally, the aggregated skeleton sequences are embedded with the GCN backbone for skeleton-based human action recognition. Experiments were conducted on three large benchmarks: NTU RGB+D, NTU RGB+D 120, and FineGym. The results show that our method achieves 93.4% (Xsub) and 98.2% (Xview) on NTU RGB+D dataset, 87.0% (Xsub) and 90.0% (Xset) on the NTU RGB+D 120 dataset, and 90.3% on FineGym dataset. Ablation studies and evaluations across various GCN-based backbones further support the effectiveness and generalization of NMA-GCN.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3