Characterization and Reliability Analysis of Enhancement-Mode PEALD AlN/LPCVD SiNx GaN MISFET with In Situ H2/N2 Plasma Pretreatment

Author:

Huang Chengyu1ORCID,Wang Jinyan1,Wang Maojun1,He Jin2,Li Mengjun1,Zhang Bin1,He Yandong1

Affiliation:

1. School of Integrated Circuits, Peking University, Beijing 100871, China

2. Shenzhen SoC Key Laboratory, PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China

Abstract

An effective in situ H2/N2 pretreatment technique for enhancement-mode GaN MISFET with a PEALD AlN/LPCVD SiNx Dual Gate Dielectric is presented. This technique features in situ H2 (15%)/N2 (85%) plasma pretreatment prior to AlN deposition. By using in situ H2 (15%)/N2 (85%) plasma pretreatment and a PEALD AlN protection layer, combined with an LPCVD SiNx gate dielectric, the quality of the AlN/GaN interface can be further improved due to the reduced interface trap densities between the AlN/GaN interface. The interface protection technique enables the successful integration of a high-quality PEALD AlN/LPCVD SiNx gate dielectric in an E-mode GaN MISFET with high performance, high stability, and high reliability. The fabricated enhancement-mode GaN MISFET exhibits a high gate swing and high channel effective mobility of 187.5 cm2/Vs, a threshold voltage of 2.9 V defined at 1 µA/mm, an on/off current ratio of 108, and a breakdown voltage of 1760 V defined at ID = 10 μm/mm. Our experiments showed a significant reduction in dynamic ON resistance and the suppression of current collapse when using the enhancement-mode GaN MISFET with PEALD AlN/LPCVD SiNx under high drain bias switching conditions, especially when the VDS is greater than the 60 V drain bias switch operating state.

Funder

Shenzhen Science and Technology Program, IER Funding of PKU-HKUST Shenzhen-Hong Kong Institution

Atomic Nano-Materials and Equipment Company Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3