Eco-Driving Cruise Control for 4WIMD-EVs Based on Receding Horizon Reinforcement Learning

Author:

Zhang Zhe1,Ding Haitao1,Guo Konghui1,Zhang Niaona12

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

2. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

Aiming to improve the distance per charge of four in-wheel independent motor-drive electric vehicles in intelligent transportation systems, a hierarchical energy management strategy that weighs their computational efficiency and optimization performance is proposed. According to the information of an intelligent transportation system, a method combining reinforcement learning with receding horizon optimization is proposed at the upper level, which solves the cruising velocity for eco-driving in a long predictive horizon based on the online construction of a velocity planning problem. At the lower level, a multi-objective optimal torque allocation method that considers energy saving and safety is proposed, where an analytical solution based on the state feedback control was obtained with the vehicle following the optimal speed of the upper level and tracking the centerline of the target path. The energy management strategy proposed in this study effectively reduces the complexity of the intelligent energy-saving control system of the vehicle and achieves a fast solution to the whole vehicle energy optimization problem, integrating macro-traffic information while considering both power and safety. Finally, an intelligent, connected hardware-in-the-loop (HIL) simulation platform is built to verify the method formulated in this study. The simulation results demonstrate that the proposed method reduces energy consumption by 12.98% compared with the conventional constant-speed cruising strategy. In addition, the computational time is significantly reduced.

Funder

China Automobile Industry Innovation and Development Joint Fund

National Natural Science Foundation of China

Niaona Zhang of the Science and technology development plan of Jilin province

open fund of the State Key Laboratory of Automotive Simulation and Control

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3