Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios

Author:

Xu Haochen1,Zhang Niaona12ORCID,Li Zonghao2,Zhuo Zichang1,Zhang Ye1,Zhang Yilei1,Ding Haitao2

Affiliation:

1. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

2. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130025, China

Abstract

Eco-driving is a driving vehicle strategy aimed at minimizing energy consumption; that is, it is a method to improve vehicle efficiency by optimizing driving behavior without making any hardware changes, especially for autonomous vehicles. To enhance energy efficiency across various driving scenarios, including road slopes, car following scenarios, and traffic signal interactions, this research introduces an energy-conserving speed planning approach for self-driving electric vehicles employing reinforcement learning. This strategy leverages vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication to acquire real-time data regarding traffic signal timing, leading vehicle speeds, and other pertinent driving conditions. In the framework of rolling horizon reinforcement learning (RHRL), predictions are made in each window using a rolling time domain approach. In the evaluation stage, Q-learning is used to obtain the optimal evaluation value, so that the vehicle can reach a reasonable speed. In conclusion, the algorithm’s efficacy is confirmed through vehicle simulation, with the results demonstrating that reinforcement learning adeptly modulates vehicle speed to minimize energy consumption, all while taking into account factors like road grade and maintaining a secure following distance from the preceding vehicle. Compared with the results of traditional adaptive cruise control (ACC), the algorithm can save 11.66% and 30.67% of energy under two working conditions.

Funder

National Natural Science Joint Fund Project

State Key Laboratory of Automotive Simulation and Control of Jilin University

Jilin Province Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3