Influence of Proton Irradiation Energy on Gate–Channel Low-Field Electron Mobility in AlGaN/GaN HEMTs

Author:

Ji Qizheng12,Liu Jun3,Yang Ming4,Hu Xiaofeng1,Wang Guangfu5,Qiu Menglin5,Liu Shanghe1

Affiliation:

1. National Key Laboratory on Electromagnetic Environment Effects, Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China

2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

3. School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Beijing Orient Institute of Measurement and Test, Beijing 100094, China

5. Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Abstract

AlGaN/GaN high-electron-mobility transistors (HEMTs) with two different gate–drain distances (30 μm and 10 μm) were exposed to 1 MeV, 0.6 MeV, and 0.4 MeV protons at a fluence of 2.16 × 1012 cm−2. The gate–channel electron density and low-field mobility were obtained by measuring the capacitance–voltage characteristics and current–voltage characteristics. After proton irradiation, the gate–channel low-field electron mobility of the AlGaN/GaN HEMT with a 30 μm gate–drain distance increases and that with a 10 μm gate–drain distance decreases. It is studied and found that the mobility behavior is related to the polarization Coulomb field scattering, and the proton irradiation influences the intensity of the polarization Coulomb field scattering by changing the polarization/strain distribution in the barrier layer. The different gate–drain distances correspond to different variation trends of scattering intensity. The effect of 1 MeV protons on the barrier layer is smaller compared with 0.6 MeV and 0.4 MeV protons, so the mobility variation is smaller.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3