Affiliation:
1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
Abstract
In this paper, the unbalanced discharge of lithium-ion battery module caused by heat dissipation is studied. The battery pack is composed of 12 batteries, which are divided into four modules in series, and three batteries in each module are in parallel. The three-dimensional electrochemical-thermal model of a single battery and a battery pack is established by the polynomial approximation pseudo-two-dimensional (PP2D) method in ANSYS fluent 16.0, and the correctness of the model is verified by simulation and experiment. On this basis, the non-uniform temperature distribution and the coupling relationship between electrical parameters and electrochemical parameters in the battery pack under inhomogeneous heat dissipation were studied. The mechanism of how the temperature difference affects the distribution of current and state of charge (SOC) is also given. According to the research results, the control of the average temperature of the battery pack and the control of temperature difference are incompatible and need to be traded off. Enhanced cooling can reduce the average temperature, but it produces a large temperature gradient, resulting in a greater internal temperature difference of the battery pack. The large temperature difference enlarges the difference of the branch current and aggravates the unevenness of SOC in the battery pack. In addition, the temperature difference most suitable for SOC uniformity is not the traditional 5 °C but increases with the increase of the ambient temperature and the cooling medium temperature.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献