An Improved UAV-PHD Filter-Based Trajectory Tracking Algorithm for Multi-UAVs in Future 5G IoT Scenarios

Author:

Tang Tao,Hong Tao,Hong Haohui,Ji Senyuan,Mumtaz Shahid,Cheriet Mohamed

Abstract

The 5G cellular network is expected to provide core service platform for the expanded Internet of Things (IoT) by supporting enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low latency communications (URLLC). Unmanned aerial vehicles (UAVs), also known as drones, provide civil, commercial, and government services in various fields. Particularly in a 5G IoT scenario, UAV-aided network communications will fulfill an increasingly important role and will require the tracking of multiple UAV targets. As UAVs move quickly, maintaining the stability of the communication connection in 5G will be a challenge. Therefore, it is necessary to track the trajectory of UAVs. At present, the GM-PHD filter has a problem that the new target intensity must be known, and it cannot obtain the moving target trajectory and the influence of the clutter is likely to cause false alarm. A UAV-PHD filter is proposed in this work to improve the traditional GM-PHD filter by applying machine learning to the emergency detection and trajectory tracking of UAV targets. An out-of-sight detection algorithm for multiple UAVs is then presented to improve tracking performance. The method is assessed by simulation using MATLAB, and OSPA distance is utilized as an evaluation indicator. The simulation results illustrate that the proposed method can be applied to the tracking of multiple UAV targets in future 5G-IoT scenarios, and the performance is superior to the traditional GM-PHD filter.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3