A Review of Generative Models in Generating Synthetic Attack Data for Cybersecurity

Author:

Agrawal Garima1ORCID,Kaur Amardeep2,Myneni Sowmya1ORCID

Affiliation:

1. School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA

2. School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA 6009, Australia

Abstract

The ability of deep learning to process vast data and uncover concealed malicious patterns has spurred the adoption of deep learning methods within the cybersecurity domain. Nonetheless, a notable hurdle confronting cybersecurity researchers today is the acquisition of a sufficiently large dataset to effectively train deep learning models. Privacy and security concerns associated with using real-world organization data have made cybersecurity researchers seek alternative strategies, notably focusing on generating synthetic data. Generative adversarial networks (GANs) have emerged as a prominent solution, lauded for their capacity to generate synthetic data spanning diverse domains. Despite their widespread use, the efficacy of GANs in generating realistic cyberattack data remains a subject requiring thorough investigation. Moreover, the proficiency of deep learning models trained on such synthetic data to accurately discern real-world attacks and anomalies poses an additional challenge that demands exploration. This paper delves into the essential aspects of generative learning, scrutinizing their data generation capabilities, and conducts a comprehensive review to address the above questions. Through this exploration, we aim to shed light on the potential of synthetic data in fortifying deep learning models for robust cybersecurity applications.

Publisher

MDPI AG

Reference167 articles.

1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014, January 8–13). Generative adversarial nets. Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada.

2. Generative adversarial networks;Goodfellow;Commun. ACM,2020

3. GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network;Shahriar;Displays,2022

4. A review of generative adversarial networks and its application in cybersecurity;Ugot;Artif. Intell. Rev.,2020

5. Generative adversarial networks: A survey toward private and secure applications;Cai;ACM Comput. Surv. (CSUR),2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3