The Challenges of Machine Learning: A Critical Review

Author:

Barbierato Enrico1ORCID,Gatti Alice1ORCID

Affiliation:

1. Department of Mathematics and Physics, Catholic University of the Sacred Heart, 25133 Brescia, Italy

Abstract

The concept of learning has multiple interpretations, ranging from acquiring knowledge or skills to constructing meaning and social development. Machine Learning (ML) is considered a branch of Artificial Intelligence (AI) and develops algorithms that can learn from data and generalize their judgment to new observations by exploiting primarily statistical methods. The new millennium has seen the proliferation of Artificial Neural Networks (ANNs), a formalism able to reach extraordinary achievements in complex problems such as computer vision and natural language recognition. In particular, designers claim that this formalism has a strong resemblance to the way the biological neurons operate. This work argues that although ML has a mathematical/statistical foundation, it cannot be strictly regarded as a science, at least from a methodological perspective. The main reason is that ML algorithms have notable prediction power although they cannot necessarily provide a causal explanation about the achieved predictions. For example, an ANN could be trained on a large dataset of consumer financial information to predict creditworthiness. The model takes into account various factors like income, credit history, debt, spending patterns, and more. It then outputs a credit score or a decision on credit approval. However, the complex and multi-layered nature of the neural network makes it almost impossible to understand which specific factors or combinations of factors the model is using to arrive at its decision. This lack of transparency can be problematic, especially if the model denies credit and the applicant wants to know the specific reasons for the denial. The model’s “black box” nature means it cannot provide a clear explanation or breakdown of how it weighed the various factors in its decision-making process. Secondly, this work rejects the belief that a machine can simply learn from data, either in supervised or unsupervised mode, just by applying statistical methods. The process of learning is much more complex, as it requires the full comprehension of a learned ability or skill. In this sense, further ML advancements, such as reinforcement learning and imitation learning denote encouraging similarities to similar cognitive skills used in human learning.

Publisher

MDPI AG

Reference68 articles.

1. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., and Krathwohl, D.R. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook I: Cognitive Domain, David McKay Co., Inc.

2. Activity theory as a framework for designing constructivist learning environments;Jonassen;Educ. Technol. Res. Dev.,1999

3. Vygotsky, L.S., and Cole, M. (1978). Mind in Society: Development of Higher Psychological Processes, Harvard University Press.

4. Intellectual evolution from adolescence to adulthood;Piaget;Hum. Dev.,1972

5. Jarvis, P. (2009). The Routledge International Handbook of Lifelong Learning, Routledge.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3