Affiliation:
1. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
2. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
Abstract
Arrhythmias are among the most prevalent cardiac conditions and frequently serve as a direct cause of sudden cardiac death. Hence, the automated detection of arrhythmias holds significant importance for assisting in the diagnosis of heart conditions. Recently, the photoplethysmography (PPG) signal, capable of conveying heartbeat information, has found application in the field of arrhythmia detection research. This work proposes a hybrid deep learning model, Res-BiANet, designed for the detection and classification of multiple types of arrhythmias. The improved ResNet and BiLSTM models are connected in parallel, and spatial and temporal features of PPG signals are extracted using ResNet and BiLSTM, respectively. Subsequent to BiLSTM, a multi-head self-attention mechanism was incorporated to enhance the extraction of global temporal correlation features over long distances. The model classifies five types of arrhythmia rhythms (premature ventricular contractions, premature atrial contractions, ventricular tachycardia, supraventricular tachycardia, and atrial fibrillation) and normal rhythm (sinus rhythm). Based on this foundation, experiments were conducted utilizing publicly accessible datasets, encompassing a total of 46,827 PPG signal fragments from 91 patients with arrhythmias. The experimental results demonstrate that Res-BiANet achieved exceptional classification performance, including an F1 score of 86.88%, overall accuracy of 92.38%, and precision, sensitivity, and specificity of 88.46%, 85.15%, and 98.43%, respectively. The outstanding performance of the Res-BiANet model suggests significant potential in supporting the auxiliary diagnosis of multiple types of arrhythmias.
Funder
Joint Funds of the National Natural Science Foundation of China
National Major Scientific Research Instrument and Equipment Development Project
Guangxi Science and Technology Major Special Project