Local-Global Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting

Author:

Zong Xinlu1,Chen Zhen1,Yu Fan1,Wei Siwei2

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China

Abstract

Traffic forecasting’s key challenge is to extract dynamic spatial-temporal features within intricate traffic systems. This paper introduces a novel framework for traffic prediction, named Local-Global Spatial-Temporal Graph Convolutional Network (LGSTGCN). The framework consists of three core components. Firstly, a graph attention residual network layer is proposed to capture global spatial dependencies by evaluating traffic mode correlations between different nodes. The context information added in the residual connection can improve the generalization ability of the model. Secondly, a T-GCN module, combining a Graph Convolution Network (GCN) with a Gated Recurrent Unit (GRU), is introduced to capture real-time local spatial-temporal dependencies. Finally, a transformer layer is designed to extract long-term temporal dependence and to identify the sequence characteristics of traffic data through positional encoding. Experiments conducted on four real traffic datasets validate the forecasting performance of the LGSTGCN model. The results demonstrate that LGSTGCN can achieve good performance and be applicable to traffic forecasting tasks.

Funder

National Natural Science Foundation of China

Hubei Provincial Science and Technology Plan Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3