Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph Learning Framework

Author:

Kong Xiangjie1ORCID,Wang Kailai1ORCID,Hou Mingliang1ORCID,Xia Feng2ORCID,Karmakar Gour3ORCID,Li Jianxin4ORCID

Affiliation:

1. School of Software, Dalian University of Technology, Dalian, China

2. School of Engineering, IT and Physical Sciences, Federation University Australia, Ballarat, VIC, Australia

3. School of Engineering, IT and Physical Sciences, Federation University Australia, Churchill, VIC, Australia

4. School of IT, Deakin University, Melbourne, VIC, Australia

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Science Applications,Mechanical Engineering,Automotive Engineering

Reference49 articles.

1. Variational graph auto-encoders;kipf;Proc NIPS Workshop Bayesian Deep Learn,2016

2. Spectral networks and locally connected networks on graphs;bruna;Proc Int Conf Learn Represent (ICLR),2014

3. Universal predictability of mobility patterns in cities

4. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

5. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the drivers of experiential outcome intentions among driverless bus passengers;Research in Transportation Business & Management;2024-10

2. Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction;Future Generation Computer Systems;2024-09

3. A Clustering-Based Multi-Agent Reinforcement Learning Framework for Finer-Grained Taxi Dispatching;IEEE Transactions on Intelligent Transportation Systems;2024-09

4. Origin-destination demand prediction of public transit using graph convolutional neural network;Case Studies on Transport Policy;2024-09

5. An Optimal Transport Approach for Network Regression;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3