Device Identity Recognition Based on an Adaptive Environment for Intrinsic Security Fingerprints

Author:

Xi Zesheng123ORCID,Zhang Gongxuan1,Zhang Bo234,Zhang Tao23

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing 210003, China

3. State Grid Smart Grid Research Institute Co., Ltd., Nanjing 210003, China

4. School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

A device’s intrinsic security fingerprint, representing its physical characteristics, serves as a unique identifier for user devices and is highly regarded in the realms of device security and identity recognition. However, fluctuations in the environmental noise can introduce variations in the physical features of the device. To address this issue, this paper proposes an innovative method to enable the device’s intrinsic security fingerprint to adapt to environmental changes, aiming to improve the accuracy of the device’s intrinsic security fingerprint recognition in real-world physical environments. This paper initiates continuous data collection of device features in authentic noisy environments, recording the temporal changes in the device’s physical characteristics. The problem of unstable physical features is framed as a restricted statistical learning problem with a localized information structure. This paper employs an aggregated hypergraph neural network architecture to process the temporally changing physical features. This allows the system to acquire aggregated local state information from the interactive influences of adjacent sequential signals, forming an adaptive environment-enhanced device intrinsic security fingerprint recognition model. The proposed method enhances the accuracy and reliability of device intrinsic security fingerprint recognition in outdoor environments, thereby strengthening the overall security of terminal devices. Experimental results indicate that the method achieves a recognition accuracy of 98% in continuously changing environmental conditions, representing a crucial step in reinforcing the security of Internet of Things (IoT) devices when confronted with real-world challenges.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3