Abstract
The escalated growth of the Internet of Things (IoT) has started to reform and reshape our lives. The deployment of a large number of objects adhered to the internet has unlocked the vision of the smart world around us, thereby paving a road towards automation and humongous data generation and collection. This automation and continuous explosion of personal and professional information to the digital world provides a potent ground to the adversaries to perform numerous cyber-attacks, thus making security in IoT a sizeable concern. Hence, timely detection and prevention of such threats are pre-requisites to prevent serious consequences. The survey conducted provides a brief insight into the technology with prime attention towards the various attacks and anomalies and their detection based on the intelligent intrusion detection system (IDS). The comprehensive look-over presented in this paper provides an in-depth analysis and assessment of diverse machine learning and deep learning-based network intrusion detection system (NIDS). Additionally, a case study of healthcare in IoT is presented. The study depicts the architecture, security, and privacy issues and application of learning paradigms in this sector. The research assessment is finally concluded by listing the results derived from the literature. Additionally, the paper discusses numerous research challenges to allow further rectifications in the approaches to deal with unusual complications.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献