Sensor Management with Dynamic Clustering for Bearings-Only Multi-Target Tracking via Swarm Intelligence Optimization

Author:

Jiang Xiaoxiao1,Ma Tianming1,Jin Jie1,Jiang Yujie2

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China

Abstract

Sensor management is a crucial research subject for multi-sensor multi-target tracking in wireless sensor networks (WSNs) with limited resources. Bearings-only tracking produces further challenges related to high nonlinearity and poor observability. Moreover, energy efficiency and energy balancing should be considered for sensor management in WSNs, which involves networking and transmission. This paper formulates the sensor management problem in the partially observable Markov decision process (POMDP) framework and uses the cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter for tracking. A threshold control method is presented to reduce the impact on tracking accuracy when using bearings-only measurements for sequential update. Moreover, a Cauchy–Schwarz divergence center is defined to construct a new objective function for efficiently finding the optimal sensor subset via swarm intelligence optimization. This is also conducive to dynamic clustering for the energy efficiency and energy balancing of the network. The simulation results illustrate that the proposed solution can achieve good tracking performance with less energy, and especially that it can effectively balance network energy consumption and prolong network lifetime.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3