A Multi-Object Tracking Approach Combining Contextual Features and Trajectory Prediction

Author:

Zhang Peng1,Jing Qingyang1,Zhao Xinlei2,Dong Lijia2,Lei Weimin1,Zhang Wei1,Lin Zhaonan1

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

2. Shenyang Er Yi San Electronic Technology Co., Ltd., Shenyang 110023, China

Abstract

Aiming to solve the problem of the identity switching of objects with similar appearances in real scenarios, a multi-object tracking approach combining contextual features and trajectory prediction is proposed. This approach integrates the motion and appearance features of objects. The motion features are mainly used for trajectory prediction, and the appearance features are divided into contextual features and individual features, which are mainly used for trajectory matching. In order to accurately distinguish the identities of objects with similar appearances, a context graph is constructed by taking the specified object as the master node and its neighboring objects as the branch nodes. A preprocessing module is applied to exclude unnecessary connections in the graph model based on the speed of the historical trajectory of the object, and to distinguish the features of objects with similar appearances. Feature matching is performed using the Hungarian algorithm, based on the similarity matrix obtained from the features. Post-processing is performed for the temporarily unmatched frames to obtain the final object matching results. The experimental results show that the approach proposed in this paper can achieve the highest MOTA.

Funder

Jie Bang Gua Shuai’ Science and Technology Major Project of Liaoning Province in 2022

the Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Computer Vision Based Warning and Behavior Analysis System for Large Passenger Flow in Stations;2024 8th International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS);2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3