ESD-YOLOv5: A Full-Surface Defect Detection Network for Bearing Collars

Author:

Li Jiale12,Pan Haipeng12ORCID,Li Junfeng12ORCID

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Changshan Research Institute, Zhejiang Sci-Tech University, Quzhou 324299, China

Abstract

To address the different forms and sizes of bearing collar surface defects, uneven distribution of defect positions, and complex backgrounds, we propose ESD-YOLOv5, an improved algorithm for bearing collar full-surface defect detection. First, a hybrid attention module, ECCA, was constructed by combining an efficient channel attention (ECA) mechanism and a coordinate attention (CA) mechanism, which was introduced into the YOLOv5 backbone network to enhance the localization ability of object features by the network. Second, the original neck was replaced by the constructed Slim-neck, which reduces the model’s parameters and computational complexity without sacrificing accuracy for object detection. Furthermore, the original head was replaced by the decoupled head from YOLOX, which separates the classification and regression tasks for object detection. Last, we constructed a dataset of defective bearing collars using images collected from industrial sites and conducted extensive experiments. The results demonstrate that our proposed ESD-YOLOv5 detection model achieved an mAP of 98.6% on our self-built dataset, which is a 2.3% improvement over the YOLOv5 base model. Moreover, it outperformed mainstream one-stage object detection algorithms. Additionally, the bearing collar surface defect detection system developed based on our proposed method has been successfully applied in the industrial domain for bearing collar inspection.

Funder

Key R&D Program of Zhejiang

Basic Public Welfare Research Program of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3