1. P. Adarsh, P. Rathi and M. Kumar, “YOLO v3-Tiny: Object Detection and Recognition using one stage improved model,” in Proc. 6th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), pp. 687–694, http://dx.doi.org/ 10.1109/ICACCS48705.2020.9074315.
2. An evaluation of retinanet on indoor object detection for blind and visually impaired persons assistance navigation;Afif;Neural Process. Lett.,2020
3. A. Bochkovskiy, C. Wang, and H. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection”, Apr. 2020, arXiv:2004.10934. [Online]. Available: https://arxiv.org/abs/2004.10934.
4. chips defect detection using a YOLOv3- dense model;Chen;Adv. Eng. Inform.,2021
5. Chen, shufflev2-yolov5 (v1.0). Zenodo, 2021. https://doi.org/10.5281/zenodo.5241425.