Towards Super Compressed Neural Networks for Object Identification: Quantized Low-Rank Tensor Decomposition with Self-Attention

Author:

Liu Baichen123ORCID,Wang Dongwei123,Lv Qi4,Han Zhi12ORCID,Tang Yandong12

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Deep convolutional neural networks have a large number of parameters and require a significant number of floating-point operations during computation, which limits their deployment in situations where the storage space is limited and computational resources are insufficient, such as in mobile phones and small robots. Many network compression methods have been proposed to address the aforementioned issues, including pruning, low-rank decomposition, quantization, etc. However, these methods typically fail to achieve a significant compression ratio in terms of the parameter count. Even when high compression rates are achieved, the network’s performance is often significantly deteriorated, making it difficult to perform tasks effectively. In this study, we propose a more compact representation for neural networks, named Quantized Low-Rank Tensor Decomposition (QLTD), to super compress deep convolutional neural networks. Firstly, we employed low-rank Tucker decomposition to compress the pre-trained weights. Subsequently, to further exploit redundancies within the core tensor and factor matrices obtained through Tucker decomposition, we employed vector quantization to partition and cluster the weights. Simultaneously, we introduced a self-attention module for each core tensor and factor matrix to enhance the training responsiveness in critical regions. The object identification results in the CIFAR10 experiment showed that QLTD achieved a compression ratio of 35.43×, with less than 1% loss in accuracy and a compression ratio of 90.61×, with less than a 2% loss in accuracy. QLTD was able to achieve a significant compression ratio in terms of the parameter count and realize a good balance between compressing parameters and maintaining identification accuracy.

Funder

National Natural Science Foundation of China

CAS Project for Young Scientists in Basic Research

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3