Style-Guided Adversarial Teacher for Cross-Domain Object Detection

Author:

Jia Longfei1,Tian Xianlong1,Hu Yuguo1,Jing Mengmeng1,Zuo Lin1,Li Wen1

Affiliation:

1. Qingshuihe Campus, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

The teacher–student framework is widely employed for cross-domain object detection. However, it suffers from two problems. One is that large distribution discrepancies will cause critical performance drops. The other is that the samples that deviate from the overall distributions of both domains will greatly mislead the model. To solve these problems, we propose a style-guided adversarial teacher (SGAT) method for domain adaptation. Specifically, on the domain level, we generate target-like images based on source images to effectively narrow the gaps between domains. On the sample level, we denoise samples by estimating the probability density ratio of the ‘target-style’ and target distributions, which could filter out the unrelated samples and highlight the related ones. In this way, we could guarantee reliable samples. With these reliable samples, we learn the domain-invariant features through teacher–student mutual learning and adversarial learning. Extensive experiments verify the effectiveness of our method. In particular, we achieve 52.9% mAP on Clipart1k and 42.7% on Comic2k, which are 6.4% and 5.0% higher than the compared baselines.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3