On-Chip Bus Protection against Soft Errors

Author:

Mach Ján1ORCID,Kohútka Lukáš2ORCID,Čičák Pavel1

Affiliation:

1. Institute of Computer Engineering and Applied Informatics, Slovak University of Technology in Bratislava, 812 43 Bratislava, Slovakia

2. Institute of Informatics, Information Systems and Software Engineering, Slovak University of Technology in Bratislava, 812 43 Bratislava, Slovakia

Abstract

The increasing performance demands for processors leveraged in mission and safety-critical applications mean that the processors are implemented in smaller fabrication technologies, allowing a denser integration and higher operational frequency. Besides that, these applications require a high dependability and robustness level. The properties that provide higher performance also lead to higher susceptibility to transient faults caused by radiation. Many approaches exist for protecting individual processor cores, but the protection of interconnect buses is studied less. This paper describes the importance of protecting on-chip bus interconnects and reviews existing protection approaches used in processors for mission and safety-critical processors. The protection approaches are sorted into three groups: information, temporal, and spatial redundancy. Because the final selection of the protection approach depends on the use case and performance, power, and area demands, the three groups are compared according to their fundamental properties. For better context, the review also contains information about existing solutions for protecting the internal logic of the cores and external memories. This review should serve as an entry point to the domain of protecting the on-chip bus interconnect and interface of the core.

Funder

European Regional Development Fund

Slovak national project KEGA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interface Protection Against Transient Faults;2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS);2024-04-03

2. A Parity-Based Dual Modular Redundancy Approach for the Reliability of Data Transmission in Nanosatellite’s Onboard Processing;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3