A Decoding Method Using Riemannian Local Linear Feature Construction for a Lower-Limb Motor Imagery Brain–Computer Interface System

Author:

Hou Yao12,Tang Rongnian2,Xie Xiaofeng2

Affiliation:

1. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

2. Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China

Abstract

Recently, motor imagery brain–computer interfaces (BCIs) have been developed for use in motor function assistance and rehabilitation engineering. In particular, lower-limb motor imagery BCI systems are receiving increasing attention in the field of motor rehabilitation, because these systems could accurately and rapidly identify a patient’s lower-limb movement intention, which could improve the practicability of the motor rehabilitation. In this study, a novel lower-limb BCI system combining visual stimulation, auditory stimulation, functional electrical stimulation, and proprioceptive stimulation was designed to assist patients in lower-limb rehabilitation training. In addition, the Riemannian local linear feature construction (RLLFC) algorithm is proposed to improve the performance of decoding by using unsupervised basis learning and representation weight calculation in the motor imagery BCI system. Three in-house experiment were performed to demonstrate the effectiveness of the proposed system in comparison with other state-of-the-art methods. The experimental results indicate that the proposed system can learn low-dimensional features and correctly characterize the relationship between the testing trial and its k-nearest neighbors.

Funder

Hainan Province Science and Technology Special Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3