RLARA: A TSV-Aware Reinforcement Learning Assisted Fault-Tolerant Routing Algorithm for 3D Network-on-Chip

Author:

Jiao Jiajia1,Shen Ruirui1,Chen Lujian1,Liu Jin1ORCID,Han Dezhi1ORCID

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

A three-dimensional Network-on-Chip (3D NoC) equips modern multicore processors with good scalability, a small area, and high performance using vertical through-silicon vias (TSV). However, the failure rate of TSV, which is higher than that of horizontal links, causes unpredictable topology variations and requires adaptive routing algorithms to select the available paths dynamically. Most works have aimed at the congestion control for TSV partially 3D NoCs to bypass the TSV reliability issue, while others have focused on the fault tolerance in TSV fully connected 3D NoCs and ignored the performance degradation. In order to adequately improve reliability and performance in TSV fully connected 3D NoC architectures, we propose a TSV-aware Reinforcement Learning Assisted Routing Algorithm (RLARA) for fault-tolerant 3D NoCs. The proposed method can take advantage of both the high throughput of fully connected TSVs and the cost-effective fault tolerance of partially connected TSVs using periodically updated TSV-aware Q table of reinforcement learning. RLARA makes the distributed routing decision with the lowest TSV utilization to avoid the overheating of the TSVs and mitigate the reliability problem. Furthermore, the K-means clustering algorithm is further adopted to compress the routing table of RLARA by exploiting the routing information similarity. To alleviate the inherent deadlock issue of adaptive routing algorithms, the link Q-value from reinforcement learning is combined with the router status based in buffer utilization to predict the congestion and enable RLARA to perform best even under a high traffic load. The experimental results of the ablation study on simulator Garnet 2.0 verify the effectiveness of our proposed RLARA under different fault models, which can perform better than the latest 3D NoC routing algorithms, with up to a 9.04% lower average delay and 8.58% higher successful delivered rate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3