Abstract
With the continuous development of tourism, the integration of the Internet of Things (IoT) into tourism projects is considered a very promising technology. Smart tourism aims to use the IoT to maximize information communication; that is, the IoT technology will become an important element to meet the needs of a new generation of tourists. Therefore, in this study, we propose a human-guided machine learning classification method based on tourist selection behavior. This classification method can effectively help tourists make a decision in choosing a certain tourist destination. The results obtained from the cross-validation experiments and performance evaluation prove the effectiveness of this method.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献