Optimal dwelling time prediction for package tour using K‐nearest neighbor classification algorithm

Author:

Wahyutama Aria Bisma1ORCID,Hwang Mintae1

Affiliation:

1. Department of Information and Communication Engineering Changwon National University Changwon Republic of Korea

Abstract

AbstractWe introduce a machine learning‐based web application to help travel agents plan a package tour schedule. K‐nearest neighbor (KNN) classification predicts the optimal tourists' dwelling time based on a variety of information to automatically generate a convenient tour schedule. A database collected in collaboration with an established travel agency is fed into the KNN algorithm implemented in the Python language, and the predicted dwelling times are sent to the web application via a RESTful application programming interface provided by the Flask framework. The web application displays a page in which the agents can configure the initial data and predict the optimal dwelling time and automatically update the tour schedule. After conducting a performance evaluation by simulating a scenario on a computer running the Windows operating system, the average response time was 1.762 s, and the prediction consistency was 100% over 100 iterations.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials

Reference22 articles.

1. Adaptation strategy of tourism industry stakeholders during the COVID‐19 pandemic: a case study in Indonesia;Kristiana Y.;J. Asian Financ. Econ. Bus.,2021

2. Tourist destination residents’ attitudes towards tourism during and after the COVID-19 pandemic

3. Forecasting tourism recovery amid COVID-19

4. The World Bank International tourism number of arrivals 2020.https://data.worldbank.org/indicator/ST.INT.ARVL[last accessed December 2022].

5. Cultural tourism: A review of recent research and trends

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3