Abstract
The Network-on-Chip (NoC) paradigm emerged as a viable solution to provide an efficient and scalable communication backbone for next-generation Multiprocessor Systems-on-Chip. As the number of integrated cores keeps growing, alternatives to the traditional multi-hop wired NoCs, such as wireless Networks-on-Chip (WiNoCs), have been proposed to provide long-range communications in a single hop. In this work, we propose and analyze the integration of the Delta Multistage Interconnection Network (MINs) as a backbone for wireless-enabled NoCs. After extending the well-known Noxim platform to implement a cycle-accurate model of a wireless Delta MIN, we perform a comprehensive set of SystemC simulations to analyze how wireless-augmented Delta MINs can potentially lead to an improvement in both average delay and saturation. Further, we compare the results obtained with traditional mesh-based topologies, reporting energy profiles that show an overall energy cost reduced on both wired/wireless scenarios.
Funder
Ministero dello Sviluppo Economico
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献