TFBN: A Cost Effective High Performance Hierarchical Interconnection Network

Author:

Rahman M. M. HafizurORCID,Al-Naeem MohammedORCID,Ali Mohammed N. M.,Sufian AbuORCID

Abstract

In order to fulfill the increasing demand for computation power to process a boundless data concurrently within a very short time or real-time in many areas such as IoT, AI, machine learning, smart grid, and big data analytics, we need exa-scale or zetta-scale computation in the near future. Thus, to have this level of computation, we need a massively parallel computer (MPC) system that shall consist of millions of nodes; and, for the interconnection of these massive numbers of nodes, conventional topologies are infeasible. Thus, a hierarchical interconnection network (HIN) is a rational way to connect huge nodes. Through this article, we are proposing a new HIN, which is a tori-connected flattened butterfly network (TFBN) for the next generation MPC system. Numerous basic modules are hierarchically interconnected as a toroidal connection, whereby the basic modules are flattened butterfly networks. We have studied the network architecture, static network performance, and static cost-effectiveness of the proposed TFBN in detail; and compared static network and cost-effectiveness performance of the TFBN to those of TTN, torus, TESH, and mesh networks. It is depicted that TFBN possesses low diameter and average distance, high arc connectivity, and temperate bisection width. It also has better cost-effectiveness and cost-performance trade-off factor compared to those of TTN, torus, TESH, and mesh networks. The only shortcoming is that the complexity of wiring of the TFBN is higher than that of those networks; this is because the basic module necessitates some extra short length link to form the flattened butterfly network. Therefore, TFBN is a high performance and cost-effective HIN, and it will be a good option for the next generation MPC system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Reports on the Fujitsu Fugaku Fugaku System;Dongarra,2020

2. Atmospheric Erosion by Giant Impacts onto Terrestrial Planets

3. University of Florida, Nvidia Plan Fastest AI Supercomputer in Academiahttps://insidehpc.com/2020/07/

4. Ten Exascale Supercomputers by 2023https://www.nextbigfuture.com/2018/10/ten-exascale-supercomputers-by-2023.html

5. Race to Exascale

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3