Low-Cost LoRaWAN Node for Agro-Intelligence IoT

Author:

Valente AntonioORCID,Silva SérgioORCID,Duarte DiogoORCID,Cabral Pinto FilipeORCID,Soares SalvianoORCID

Abstract

Intelligent agriculture in general, but especially when agricultural fields are very heterogeneous, requires a large number of sensors in order to obtain an effective control and thus increase productivity. This need becomes more evident in vineyards on the farms of the demarcated Douro region due to the specificities of the territory and the vineyards themselves. Thus, it is necessary to have low cost sensors which are, essentially, easy to install and maintain. In the present work, a node with these characteristics was developed, which, in addition, is low consumption and communicates wirelessly through a Long Rang Wide Area Network (LoRaWAN) network. To obtain an easy installation, a library of clusters was created for the LoRaWAN network and dedicated to sensors used in agriculture, especially those using an asynchronous serial protocol for intelligent sensors. Three nodes were developed and tested with sensors used in agriculture to measure several environmental parameters (soil and air temperature; wind speed, gust and direction; soil water content, water tension and electrical conductivity; solar radiation; precipitation; atmospheric and vapor pressure; relative humidity; and lightning strikes count). The three nodes send data to a server through an existing gateway on the farm. The data are decoded and sent to an Internet-of-Things analytics platform where it is aggregated, viewed and analyzed. Samples of the data collected are presented. The developed nodes are of small dimensions ( 85 × 65 × 35 m m ), thus making them easy to handle and install. Energy consumption depends on the distance to the gateway, and the number and type of sensors connected to each node. In the implemented cases, the maximum consumption was ≈ 400 μ A . The development of a cluster based library makes the node plug-and-play. The developed nodes will be a great step forward for the use of wireless sensors in smart agriculture in Douro vineyards.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference47 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3