Abstract
A network of agents constituted of multiple unmanned aerial vehicles (UAVs) is emerging as a promising technology with myriad applications in the military, public, and civil domains. UAVs’ power, memory, and size constraints, ultra-mobile nature, and non-trusted operational environments make them susceptible to various attacks, including physical capturing and cloning attacks. A robust and resilient security protocol should be lightweight and resource-efficient in addition to providing protection against physical and tampering threats. This paper proposes an authentication protocol for a UAV-based multi-agent system robust against various threats and adversaries, including strong resistance against cloning and physical attacks. The proposed protocol is based on a physical unclonable function (PUF), a well-known hardware security primitive that is utilized for low-cost authentication and cryptographic key generation. The analysis of the proposed approach shows that it provides strong protection against various attacks, including tampering and cloning, and exhibits scalability and energy efficiency.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献